國立中山大學 112學年度第2學期 課程教學大綱

National Sun Yat-sen University 112Academic year Course syllabus

中文名稱
Course name(Chinese)

物理數學與數值方法(二)

課號
Course Code

PHYS222

英文名稱
Course name(English)

MATHEMATICS AND CODING ON PHYSICS (II)

課程類別
Type of the course

講授類

必選修
Required/Selected

必修

系所
Dept./faculty

物理學系

授課教師
Instructor

岩本祥    

學分
Credit

3

因應嚴重特殊傳染性肺炎(武漢肺炎),倘若後續需實施遠距授課,授課方式調整如下:

         同步遠距【透過網路直播技術,同時進行線上教學,得採Microsoft Teams、Adobe connect等軟體進行】
同步遠距含錄影【透過網路直播技術,同時進行線上教學並同時錄影,課程內容可擇日再重播,得採Microsoft Teams、Adobe connect等軟體進行】
非同步遠距【課堂錄影或錄製數位教材放置網路供學生可非同時進行線上學習,得採EverCam、PPT簡報錄影、錄音方式進行】
實作類課程,經評估無法採遠距課程教學,後續復課後密集補課

★遠距教學軟體操作說明連結

因應嚴重特殊傳染性肺炎(武漢肺炎),倘若後續需實施遠距授課,評分方式調整如下:

        
1.Midterm Exam30%
2.Term Exam20%
3.Classroom performance and assignments50%

課程大綱 Course syllabus

         An intermediate-level mathematics course designed for physics learners. We will cover linear algebra, Fourier analysis, special functions, and methods of numerical analysis. Prerequisites for this course include a foundational understanding of calculus, vector and matrix arithmetic, and ordinary differential equations.
 
After reviewing the basics of matrices, you first learn linear algebra with an emphasis on practical handling of matrices and eigenvalue problems. Motivated students are expected to reach the concept of vector space. You then learn basic topics of function analysis, particularly Fourier analysis and special functions.
 
Additionally, the course introduces fundamental concepts in numerical analysis and basic numerical methods for mathematical problems such as ordinary differential equations. Students will gain theoretical knowledge in numerical analysis as well as practical coding skills in Python, using the contemporary Python ecosystem.
This course does not cover the mathematical foundations of each topic. Instead, students are expected to be familiar with the topics and develop an appreciation of their usefulness.
 
[Special remarks on Computer environment]
We are going to use Python 3.x (>= 3.8) and GitHub Classroom. Students need a GitHub account and a computer that can run Python 3. In addition, you are recommended to install and use Visual Studio Code as the primary editor. Further instructions are given during the lectures.



課程目標 Objectives

         - I am familiar with matrices and vectors. In particular, I can explain “vector space”, “basis”, “linear transformation”, “matrix rank”, and “eigenvectors”.
- I can perform Fourier analysis of functions and explain its physical interpretation.
- I know several special functions and their basic properties.
- Utilizing computers and online resources, I can numerically solve problems in linear algebra.
- I can use Python to find numerical solutions to basic differential equations.



授課方式 Teaching methods

         In-person lectures.




評分方式﹝評分標準及比例﹞Evaluation (Criteria and ratio)等第制單科成績對照表 letter grading reference

        
1.Midterm Exam30%
2.Term Exam20%
3.Classroom performance and assignments50%

參考書/教科書/閱讀文獻 Reference book/ textbook/ documents
〔請遵守智慧財產權觀念,不可非法影印。教師所提供之教材供學生本人自修學習使用,不得散播及做為商業用途〕
No copies for intellectual property rights. Textbooks provided by the instructor used only for self-study, can not broadcast or commercial use

         E. Kreyszig, Advanced Engineering Mathematics, 10th ed. Taiwan custom version, Wiley (2018).
 
- You need the textbook, preferably a physical book rather than an e-book.
- You are assumed to have learned Chapters 1, 2, 9, and 10. We discuss 7, 8, 11, 5, and 21.



彈性暨自主學習規劃 Alternative learning periods

本門課程是否有規劃實施學生彈性或自主學習內容(每1學分2小時)
Is any alternative learning periods planned for this course (with each credit corresponding to two hours of activity)?
否:教師需於「每週課程內容及預計進度」填寫18週課程進度(每1學分18小時之正課內容)。
No:The instructor will include an 18-week course plan in the weekly scheduled progress (each credit corresponds to 18 hours of instruction)
是:教師需於「每週課程內容及預計進度」填寫16週課程內容(每1學分16小時之正課內容),並於下列欄位填寫每1學分2小時學生彈性或自主學習內容。
Yes:The instructor will include a 16-week course plan in the weekly scheduled progress (each credit corresponds to 16 hours of instruction);
the details of the planned alternative learning periods are provided below (each credit corresponds to two hours of activity).

本門課程規劃學生彈性或自主學習內容(每1學分2小時):
Alternative learning periods planned for the course (each credit corresponds to two hours of activity):
學生彈性或自主學習活動
Alternative learning periods
勾選或填寫規劃內容
Place a check in the appropriate box or provide details
時數
Number of hours
學生分組實作及討論
Group work and discussion
參與課程相關作業、作品、實驗
Participation in course-related assignments, work, or experiments
參與校內外活動(研習營、工作坊、參訪)或競賽
Participation in on- or off-campus activities (e.g., seminars, workshops, and visits) or competitions
課外閱讀
Extracurricular reading
線上數位教材學習
Learning with online digital learning materials
其他(請填寫規劃內容)
Other (please provide details)

每週課程內容及預計進度 Weekly scheduled progress

        
週次日期授課內容及主題
WeekDateContent and topic
12024/02/18~2024/02/24Matrix and vector.
22024/02/25~2024/03/02Rank. Vector space. Determinant. / Setup of coding environment.
32024/03/03~2024/03/09Linear-equation system. Determinant. / Floating point number.
42024/03/10~2024/03/16Vector space.
52024/03/17~2024/03/23Eigenvalue problem.
62024/03/24~2024/03/30Matrix diagonalization.
72024/03/31~2024/04/06Recap of vector calculus.
82024/04/07~2024/04/13Midterm Exam
92024/04/14~2024/04/20Fourier series.
102024/04/21~2024/04/27Strum–Liouville problems.
112024/04/28~2024/05/04Fourier transformation.
122024/05/05~2024/05/11Special functions.
132024/05/12~2024/05/18Special functions. Frobenius Method.
142024/05/19~2024/05/25Numerics for ODEs.
152024/05/26~2024/06/01Numerics for ODEs.
162024/06/02~2024/06/08Term Exam
172024/06/09~2024/06/15(Flexible learning week; No Class)
182024/06/16~2024/06/22Basic group theory. Topics requested by students.

課業討論時間 Office hours

         時段1 Time period 1:
時間 Time:星期一15:10-17:10
地點 Office/Laboratory:理SC2006-1
時段2 Time period 2:
時間 Time:星期二15:10-17:10
地點 Office/Laboratory:理SC2006-1

系所學生專業能力/全校學生基本素養與核心能力 basic disciplines and core capabilitics of the dcpartment and the university

        
系所學生專業能力/全校學生基本素養與核心能力
basic disciplines and core capabilities of the department and the university
課堂活動與評量方式
Class activities and evaluation
本課程欲培養之能力與素養 This course enables students to achieve.
紙筆考試或測驗 Test.課堂討論︵含個案討論︶ Group discussion (case analysis).個人書面報告、作業、作品、實驗 Indivisual paper report/ assignment/ work or experiment.
個人書面報告、作業、作品、實驗 Indivisual
群組書面報告、作業、作品、實驗 Group paper report/ assignment/ work or experiment.
群組書面報告、作業、作品、實驗 Group paper rep
個人口頭報告 Indivisual oral presentation.群組口頭報告 Group oral presentation.
課程規劃之校外參訪及實習 Off-campus visit and intership.
課程規劃之校外參訪及實習 Off-campus visit and intership.
證照/檢定 License.參與課程規劃之校內外活動及競賽 Participate in off-campus/ on-campus activities and competitions.課外閱讀 Outside reading.
※系所學生專業能力 Basic disciplines and core capabilities of the department
1.具備通盤認知基礎物理學識之能力 1. A broad knowledge of fundamental physics.           
2.具備深入了解物理各領域學識之能力 2. Competence of developing in-depth knowledge in all sub-fields of physics.           
3.具備物理相關數學之能力 3. Solid mathematical foundation essential to physics.VVVV      V
4.具備實作物理及應用物理學識之能力 4. Experiences in hands-on practice and competences in applications of physics.           
5.具備探索未知之精神及實踐之能力 5. The curiosity and practice of exploring the unknown.V         V
※全校學生基本素養與核心能力 Basic disciplines and core capabilities of the university
1.表達與溝通能力。 1. Articulation and communication skillsVVVV V     
2.探究與批判思考能力。 2. Inquisitive and critical thinking abilitiesVVVV V    V
3.終身學習能力。 3. Lifelong learningV         V
4.倫理與社會責任。 4. Ethnics and social responsibility           
5.美感品味。 5. Aesthetic appreciation           
6.創造力。 6. Creativity           
7.全球視野。 7. Global perspective           
8.合作與領導能力。 8. Team work and leadership           
9.山海胸襟與自然情懷。 9. Broad-mindedness and the embrace of nature            

本課程與SDGs相關項目:The course relates to SDGs items:

        
SDG1-消除貧窮(No Poverty)
SDG2-消除飢餓 (Zero Hunger)
SDG3-良好健康與福祉(Good Health and Well-being)
SDG4-教育品質(Quality Education)
SDG5-性別平等(Gender Equality)
SDG6-乾淨水源與公共衛生(Clean Water and Sanitation)
SDG7-可負擔乾淨能源(Affordable and Clean Energy)
SDG8-優質工作與經濟成長(Decent Work and Economic Growth)
SDG9-工業、創新和基礎建設(Industry,Innovation and Infrastructure)
SDG10-減少不平等(Reduced Inequalities)
SDG11-永續城市(Sustainable Cities and Communities)
SDG12-責任消費與生產(Responsible Consumption and Production)
SDG13-氣候行動(Climate Action)
SDG14-海洋生態(Life Below Water)
SDG15-陸域生態(Life on Land)
SDG16-和平、正義和穩健的制度(Peace,Justice And Strong Institutions)
SDG17-促進目標實現的全球夥伴關係(Partnership for the Goals)
本課程和SDGS無關

本課程校外實習資訊: This course is relevant to internship:

         本課程包含校外實習(本選項僅供統計使用,無校外實習者,得免勾記)
The course includes internship.(For statistical use only. If the course without internship, please ignore this item.)

實習定義:規劃具有學分或時數之必修或選修課程,且安排學生進行實務與理論課程實習,於實習終了取得考核證明繳回學校後,始得獲得學分;或滿足畢業條件者。(一般校內實習請勿勾選此欄位)

Internship: The required or elective courses should include credits and learning hours. Students should participate in the corporative company or institution to practice and learn the real skills. An internship certification must be handed in at the end of internship to get the credits or to fulfil the graduation requirements.

回上一頁